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1. INTRODUCTION

In the simulation of the sequential setback and aerodynamic dra‘y,
the projectile (called a bird), having equipment on board to be test
evaluated, emerges from a launcher (typically a gas gun) and impacts an
aluminum honeycomb or wood mitigator located between the bird and a
momentum exchange mass (MEM). The equipment in the bird is mounted so
that the impact simulates the setback. pulse (acceleration-time
trajectory) that occurs in the weapon launcher. The drag signature 1is
simulated thereafter. Tes: data of the bird displacement as a function
of time are obtained by a streak photograph, from which the setback and
drag are determined by double differentiation. The conservation
equations of mass, momentum, and energy are solved exactly to obtain the
forces acting on and the motions of the bird, mitigator, and MEM as
functions of time.

The setback comprises essentially three parts: rise, steady, and
fall, The rise and steady parts occur during the crushing of the
mitigator, and their characteristic features are determined primarily by
the bird mass and by the shape, dynamic crush strength, and mass density
of the mitigator. The fall is controlled primarily by the elasticity of
the components at maximum mitigator «crush; this may include the
elasticity intentionally introduced into the system, by incorporating
springs into the MEM. By this means, parabolic, trapezoidal, and other
pulse shapes have been obtained.

The drag simulation 1is cobtained as follows: The bird emerges from
the gas gun, and impact occurs within an open-ended catch tube of
circular cross section (fig. 1, 2). (The bird amd MEM are circular
cylinders,) The bird forms a close fit with the inner wall of the catch
tube., However, the diameter of the MEM is selected to obtain a desired
air leakaye into the cavity formed by the bird, tube, and MEM. (The
mitigator diameter is small enough not to obstruct air flow between the
bird and the MEM.) The setback pulse 1is designed so that the bird
velocity at the completion of setback 1is approximately zero, and the
bird momentum is transferred to the MEM., The MEM motion increases the
length of the cavity, causing the cavity pressure to drop, and gives
rise to a pressure differential across the bird. The bird acceleration,
or draqg simulation, is therefore determined primarily by the relative
motion between the bird and the MEM, the cavity volume, the air leakage

into the cavity, and the bird mass. The MEM mass is much larger than
the bird mass so that little change in the MEM speed occurs during drag
simulation. Fressure buildup in the cavity during a setback 1is

minimized by the longitudinal slotted opening to the atmosphere in the
catch tube that extends from the point where the bird enters the tube
to a position near where the bird impacts the mitigator. The drag
profile 1s not significantly changed by moderate variations of the
initial cavity volume and pressure.
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2, SIMULATOR DESIGN
In the present tests,* a Harry Diamond Laboratories (HDI) gas gun
2.5 in, (6.4 cm) in diameter and 8 ft (2.4 m) 1long was wused in
combination with a catch tube 2.5 in. (6.4 cm) in diameter and 1.5 ft
{0.46 m) long to provide the sequential simulation of the setback and
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vacuum of about 1 Torr (100 Pa) is drawn in the space between the seals;
and, upon release of a restraining pin, the bird is driven the length of
the gun and into the catch tube by atmospheric air. In each of 30
tests, the 0.53-kg bird emerged from the gun at a speed of 155 * 5§ ft/s
(47.3 £ 2 m/s) (table I).

TABLE ). TEST VALUES USED IN SIMULATION OF DRAG AND SETBACK

Bird MEM Cavity leckage | Initial projectile Bird MEM
mass | masy | Washer diam area ("bird"") veloclty| velocity | velocity
Shot Ml M2 ¢ A7 uo vl u2 Mitigator
ke) ! kg) {in.) (in.2) £u/s) (tt/s) (fr/s)
99 | 0.53| 2.19 2,483 0.117 156 -0.6 37.9 Vood
100 | 0.53| 2.19 2,483 0.117 160 -1.3 38,8 Wood
101 0.53 | 2.19 2.451 0.241 155 0.6 36.7 Wood
102 | 6,93 ) 2.19 2,451 0.241 {») 0.8° 36.7° Wood
tos | 0.53 1 2.19 2.451 0.241 (») 0.8° 36.7° Wood
105 | 0.53| 2.19 2.451 0.241 150 1.5 35.6 Wood
107 | 0.3 2.19 2.401 0.432 157 3.0 37.3 Vood
168 | 0.53 1 2.19 2.40t 0.432 156 3.7 36.9 Wood
109 | 0.53 ] 2.19 2.350 0.622 156 3.5 36.9 Vood
1o | 0.53 | 2.19 2.350 0.622 157 3.6 37.1 Wood
it ] 0.53 ] 2.15 2.0 1.443 153 3.8 36.8 Wood
112 | 6.53 ] 2.15 2.0 1. 443 153 3.2 36.9 Vood
113 | 0.53 | 5.06 2.48) o.17 155 -3.6 16.6 Aluminum
1a | 0.53 | 5.06 2,483 0.117 154 -3.0 16.4 Aluminum
16 | 0.53 ] 5.06 2.400 0.432 155 3.8 15.8 Aluminum
117 1 0.53 | 5.06 2,400 0.432 ) 4.2 15.8¢ Alumlinum
18 | 0.53 ] .06 2.401 0.432 156 3.6 15.8 Aluminum
19 | 0.3} 5.06 2.451 0.241 155 1.1 16.0 Aluminum
120 | 0.53 ] 5.06 2.45) 0.241 155 1.1 16.0 Aluminum
121 | 6.53 | 2.15 2.00 1.443 155 4.7 3741 Wood
122 § 0.53 ! 2.15 2.00 1.4h3 157 4.1 37.7 Vood
123 | 0.53 | 2.19 2.350 0.622 155 3.3 36. Wood
124 | 0.53 ) 2.19 2.350 0.622 155 3.2 36.7 Vood
125 | 0.53 | 2.19 2.401 0.432 157 3.3 37.2 Wood
126 | 0.53 | 2.19 2.401 0.432 157 3.2 37.2 Wood

arncludes washer weight = 40 grams,
No Jdata taken,
Cassumed value, in the absence of complete data,

To avoid any effects on drag by the air flow following the bird down
the gas gun, the first contact of the bird with the mitigator occurs
when the bird is completely inside the catch tube. (The gas gqun and
catch tube are separated by a distance of 6 in, (15 cm).) The bird
setback is caused by the crushing of the mitigator, which is located
just aft of the slotted opening and which is in physical contact with
the MEM, Both the mitigator and the MEM are at rest prior to impact.
For a nonelastic MEM (consisting only of a mass without springs), the
ratio of MEM to mitigator masses is about 100, and the ratio of MEM to
bird masses is about 10 for aluminum honeycomb and about 5 for wood
mitigators.,

7



The aims of the present tests were to evaluate the simulator and to
simulate the setback and drag environments experlienced by an  a«rming
mechanism being developed for use in Army ordnance projectiles, To this
en:l, the bird was made of Eakelite, with a diameter of 2.4&3 irn.
(.307 cm) at the impact section and length of ¢ in., (15 cm) (fig. 3).
As shown, the bird diameter aft of the impact secticn was reduced by
0,04 in, (0,15 cm) so that a stripe pattern attached to the bird dia not
make physical contact with the wall of the gas gun or catch tube. (A
streak photograph of the stripes gives displacement-time data from which
the bird setkack and drag are obtained by double differentiation.) The
interior of the bird accommodated two arming mechanisms (fig. 3).

HEO=T0
Figure 3. Projectile ("bird") and safety and arming device.

The aluminum honeycomb mitigators had a static crush strength of
2000 psi (14 MPa); each was a cube with a 1.,5-in. (3.8 cm) edge. A
light plastic foam strip was taped around each aluminum mitigator to
center the mitigator with the axis of the catch tube (fig. 4). The wood
mitigators (four marine-grade, 3/4-in., (1.9-cm) fir plywood sections
held together with masking tape) fitted snugly into the tube and were
2.9 in. (7.4 cm) long with an equilateral triangular cross section
having an area of 2.0 in.? (13 cm?) (fig. 4).

Figure 4 shows the mitigators before (top) and after (bottom)
impact. To attain approximately zero bird speed following a setback,
the required weights of the MEM's were 2.19 kg for the wood mitigator
and 5,06 kg for the aluminum honeycomb mitigator. (The MEM weights are
different because the elasticity of the two mitigators is different.)
The MEM's consisted of brass bars 2 in. (5 c¢cm) 1in diameter with four
legs at each end (fig. 5). On placing the MEM in the catch tube, the
center line of each MEM was coincident with the axis of the tube.
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554-76
Figure 5. Momentum exchange masses and washers.

The bird and MEM's were tested for fixed initial relative motion
betweon the bird and the MEM following setback and for insignificant
variations of cavity pressure and volume (with respect to their effect
on drag). In these tests, the drag was determined by controlling the
air leakage in the cavity. To control it, an aluminum washer of desired
diameter was screwed to the impact end of the MEM (fig. 5). Each washer

weighed about 40 grams, and the mitigator was placed in physical contact

with the washer, Air leakage was determined by the size (diameter) of
the washer (taking into account the small leakage past the bird into the
cavity).

3. COMPUTER PROGRAMS

Computer code 1 (app A) is presented for the computation of the
setback acceleration (code SETBACK for the aluminum mitigator only).
The code is an adaptation of computer code VARY® case A, of
Pollin.,: Computer code 2 (app A) is presented for the computation of
the acceleration caused by aerodynamic drag (code DRAG) for both
aluminum and wood mitigators. Code SETBACK is based on tue conservation
equations for continuity, momentum, and energy. No computer code 1is
available for wood mitigators; here, setback designs were based on
unpublished HDL experimental data.

lrrvin Pollin, Impact Pulse Shaping, Harry Diamond Laboratories
TR=-1710 (June 1975).
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The termination of the mitigator crush occurs when Ul = U2 at the
time denoted by T = 1TC. The elasticity in the mitigator produces an
additional setback for a time interval at T > TC, Empirical data
indicate that a linear spring constant formulation vyields the proper
additional setback acceleration and the time at which the sethack
terminates. The spring constants for the aluminum and wood are based orn
equal displacements at each end of the mitigator of Cl = C2 = 0.01 i,
(0.03 cm) for aluminum and Cl = C2 = 0,06 in. (0.15 cm) for wood at the
time T = TC and for the load acting on the mitigator at that time. Tc¢
facilitate the reduction of streak photograph data, the tests werc
designed so that the bird velocity Ul = 0 at the termination of the
setback. For this condition, the above spring constants were used 1in
code SETBACK to determine the appropriate MEM mass for both the aluminum
and the wood mitigators.

Maximum setback loading is at least 100 times larger than that for
aerodynamic drag, and the setback pulse fall occurs in less +than 400 us
{(fig. 6, 7). Thus, the setback and drag parts of the pulse are clearly
distinguishable. The termination of the setback marks the commencement
of the drag. However, because of the reduction «¢f the cavity volume,
the cavity pressure rises to about 20 psi (0.14 MPa) during the setback

(sect. 4). Hence, in the computations, the commencement of drag is
assumed to occur at the time during the pulse fall where the streak
photograph data yield Al = -22 g (acceleration of gravity); this is the

bird acceleration caused by a cavity pressure of 20 psi (0.14 MPa) in
the absence of a setback. The streak photograph data give the value of
Ul at the commencement of the drag, and momentum conservation yields the
corrésponding value for the MEM velocity, U2. The measured length cf
the crushed mitigator is used to denote the distance separatina the bird
and the MEM at the commencement of drag, from which distance the
corresponding volume of air in the cavity is determined.
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3,1 Setback for Aluminum Mitigators

The impact of the bird with the miticator (which 1is attached to
and at rest with the MEM 1inside the c¢atch tube--fig., 2) initiates
crushing of the mitigator at its interface with the bird, The crush
front, which 1is the boundary separating the crushed and uncrushed
mitigator masses, proceeds toward the MEM during crushing,

g
W

The mitigator dynamic crush force is given by Pollir!

F = 1.05AFO(1 + 0.5(Ul - u2)/tol |,
wnere FC is the mitigator static c¢rush pressure, Ul and U2 are
instantaneous bird and MEM velocities, and UC 1s the impact kird
velocity.
The hydrodynamic crush force arising from acceleration of
mitigator mass at the crush front is given by

R = M4(Ul - ©2) ,

where the time rate of mitigator crush (M4) is given by

M4 = pAS(Ul - U2) ,

¢ is the density of the uncrushed mitigator, A 1is the instantaneous
crush area as measured at the bird interface, and S is the ratic of the
crush front travel to the depth of the bird penetration.

The force (F + R) 1is transmitted to the mass (M1 + M4), where

Ml is the mass of the bird and M4 is the crushed mitigator mass., Hence,
the setback acceleration experienced by the bird is

Al = -(F + R)/(M1l + M4) . S

lrrvin Pollin, Impact Pulse Shaping, Harry Diamond laboratories
TR-1710 ("une 1975).




The dynamic crush force F is transmitted to the mass (M2 + M5),
where M2 is the mass of the MEM and M5 is the uncrushed mitigator mass.
Hence, the MEM acceleration is

A2 = F/(M2 + M5) (2)

The honeycomb spring constants, Z1 (at the bird interface) = 22
(at the MEM interface), are determined at the time T = TC (time duration
of the mitigator crush). They are determined by two parameters: (1) the
mitigator displacements Cl = C2 = 0.0l in. (0.03 cm), where Cl1 and C2
are the mitigator elongations at the bird and MEM interfaces, and (2)
the force 1.CS5AF0 acting on both M1 and M2.

No elasticity is assumed for T < TC, and the setback ends when
the forces acting on M1, M2, and M3 are simultaneously zero,
Accordingly, for T > TC to the time at which Al = A2 = A3 = 0 (where A3
is the mitigator acceleration), the bird and MEM accelerations were
computed from the equations

Al =21°X1/M1 , (3)

A2 Z2¢X2/M2 , (4)

where X1 is the instantaneous honeycomb elongation at the bird interface
and X2 is that at the MEM interface.

Computed wvalues for the bird and the MEM velocities and
displacements were obtained by single and double integrations of the
equations for Al and A2.

3.2 Drag

The drag force is determined entirely by the cavity and the
ambient atmospheric pressures acting on the bird face. For the reasons
discussed in section 4, it is sufficient to assume that the initial
volume for the air in the cavity was 4.92 in.3 (80.6 cm3) and the
initial cavity air pressure was 20 psi (0.14 MPa) for all test
conditions. Table I shows the initial bird and MEM speeds for each
test, The cavity pressure changes as a result of the air leakage into
or out of the cavity and as a result of the change of the cavity volume
arising from the relative motion between the bird and the MEM,
Incompressible air flow is assumed at a temperature of 530°R, and the
leakage velocity U7 is computed from the equation

15



U7 = C(2,PC - L)’/rz'/")H , (5)
where the friction coefficient ¢ = 0.5 for incompressible air flow with
friction and ¢ = 1.0 for Bernoulli (frictionless) incompressible air
flow, PO is the ambient atmospheric yjpressure, 1 is the total air
pressure in the cavity, and D7 1is the air density. The actual air
leakage can be expected to have a value of C in the range 0.5 < C < 1.
The mass rate of flow into or out of the cavity is given by

R7 = D7+U7+A7 .

The cavity pressure is the sum of the partial pressures of the initial
air in the cavity and the air leakage. Code DRAG computes the above
quantities at small time intervals during the aerodynamic drag phase.

4, THEORETICAL AND EXPERIMENTAL RESULTS

Table I summarizes the tests that were run for the setback and the
drag for the two types of mitigators and for the washer diameters of
2.483, 2.45!, 2.401, and 2.350 in. (6.307, 6.226, 6.099, and 5.969 cm).
Tests were run also without any washers, so that the obstructed area was
that of the MEM crocs section, The MEM has a diameter of 2.000 in.
(5.080 cm), to which must be added the projected area
0,375 in.2 (2.42 cm?) of the four legs at each end of the MEM., The
catch tube diameter measured 2.503 in. (6.358 cm) and the bird diameter
measured 2.483 in, (6.307 cm), which resulted in a leakage area of
0.0783 in.? (0,505 cm?). Area A7 is the sum of the leakage areas about
the bird and washer/MEM into the cavity. The table also gives the
streak photograph values for UO and Ul and the values for U2 computed
from momentum conservation. Both Ul and U2 are for the time denoting
the termination of setback.

4,1 Setback

The streak camera was run at a comparatively slow speed so that
both the setback and the drag could be recorded on a single photograph.
The photograph covered a period of 20 ms, of which only about 1.5 ms
consisted of the setback. The setback displacement-time data were taken
at 200-us intervals, These time intervals are large compared with the
setback pulse duration, so that the reduced data "smooths" the actual
pulse shape, Notably, the rise and fall times are lengthened and the

Al is decreased.
max




Figure 6 shows the reduced experimental setback data of four
typical tests for Al with aluminum honeycomb mitigators. If one allows
for an uncertainty (shift of the time axis) of 50 ps in determining the
beginning of the test pulse, the differences between experimental data
are generally within about 10 percent of the average value of the Al
data for the given time. Figure 6 shows also the calculated values for
Al based on the work of Pollin.! The calculated and experimental data
can be brought into good agreement, recalling that the experimental
displacement data are read at 200-us intervals.

Figure 7 shows typical experimental setback pulses with wood
mitigators. The wood and aluminum mitigators vyielded approximately
equal peak accelerations, although the wood gave longer pulse duration.
Having the same value for U0 and approximately zero terminal velocity,
the two sets of pulses have the same area under the curve since

wo-f aar |

0

where T = TS is the time of the setback pulse, The pulse time is larger
for the wood mitigator because its curve 1is less rectangular, The
test-to-test repeatability of Al for the wood mitigators is about the
same as that noted above for the aluminum,

A reliable measure of this test data precision (which differs
from that for drag) 1is given by the fluctuation of the data during the
free-flight bird travel over a distance of approximately 1.5 in.
(3.8 cm) before the setback begins. Accordingly, the average random
error in determining the setback velocity and acceleration were found to
be 1 ft/s (0.3 m/s) and 200 q.

4.2 Drag

The bird velocity is generally less than 1.0 ft/s (3.0 m/s)
during the entire drag phase. To determine the measurement precision,
three streak photographs were obtained with the bird at rest. (That is,
the bird was inserted into the slotted opening of the catch tube--which
is in the camera field of view, and three streak photographs were taken
with the bird at rest in the same way as for an actual test for the
setback or the drag.) The test data precision 1is given by the
fluctuation of the data for this condition. The average random error in
determining velocity and acceleration during the drag phase was found to
be 0.1 ft/s (0.03 m/s) and 1 g. A few measurements were found to be in
error by 2 g, and one error amounted to 3 g. The timewise

1Irvin Pollin, Impact Pulse Shaping, Harry Diamond Laboratories
TR=-1710 (June 1975).
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point-by-point fluctuation of the drag acceleration with the bird at
rest is shown in figure 8., Although test data of bird displacement were
taken at time intervals of 400 s, calculations for the acceleration
were made at intervals of 800 us. The test data shown in figure 8 are
separated at 400-us intervals, This difference results from the fact
that two overlapping sets of data points at 800-uys time intervals,

separated by 400 us, were prepared from each photograph.

On the average, the wood and aluminum mitigators were each
crushed 0,7 in. (2 cm). The variation of crush ahove or below 0.7 in.
: (2 cm) was within 5 percent. This 1is consistent with the previously
it noted <lO-percent variation of the setback acceleration. The initial
bird impact with the mitigator occurred 0.25 in. (0.64 cm) aft of the
g slotted opening of the catch tube. Starting from the bird position at
a2 the edge of the slotted opening, the volume of air in the cavity was
: 9.99 in.3 (164 cm3) for the wood mitigator and 5.44 in.3 (89.1 cm3) for
i the aluminum mitigator, At the termination of the setback, the air
volumes were 6.40 in.? (105 cm3) for the wood mitigator and
3.48 in.? (57.0 cm3) for the aluminum mitigator, Thus, for both
mitigators, the compression ratio was 1.56. Assuming 1isentropic or
isothermal compression without leakage, the corresponding cavity air
pressure was 27.4 or 22.9 psi (0.189 or 0.158 MPa). However, up to the
termination of the setback, there was a time interval of about 1.5 ms
for leakage to occur, and the corresponding amount of the reduction of
the cavity pressure depended on A7. We «can assume a cavity volume of
4.92 in.? (80.6 cm?) so that, in the absence of the mitigator, the
length of the cavity at the termination of the setback 1LO = 1 in.
(2.5 cm) . Table II(A) shows the drag induced Al(T) for incompressible
frictionless flow with cavity pressures at the beginning of the drag of
20 and 30 psi (0.14 and 0.21 MPa) for A7 values of 0.117 and
1.068 in.2 (0.755 and 6.890 cm?). There 1is a small effect of cavity
pressure on Al up to about S5 ms for A7 = 0.117 in.? (0.755 cm®) and
negligible effect on Al beyond 1 ms for A7 = 1.068 in.2 (6.890 cm?).
The net time effect is further reduced if we take into account the time
required for the setback.
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TABLE 11. EFFECTS OF INITIAL CAVITY PRESSURE
AND VOLUME ON AERODYNAMIC DRAG (Cont'd)

(8) Lftfects of Initial Cavity Volume
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The cavity volumes at the beginning of the drag for the wood
and aluminum mitigators were 1.3 and 0.7 times larger than the volume
4.92 in,3 (79.5 cm3). If one assumes an initial cavity air pressure of
20 psi (0,14 MPa), table II(B) gives the drag induced Al(T) for
incompressible frictionless flow with LO values of 1.3 in. (3.3 cm) and
0.7 in. (2 cm) (corresponding values of 1O for the above volumes) and
for A7 equal to 0.117 and 1.068 in.2? (0.755 and 6.890 cm?)., The effect
of initial cavity volume on Al is approximately the same as that found
above for initial cavity pressure.

In the following comparison between the predicted and experi-
mental drag acceleration data (fig. 9 to 16), the initial cavity air
pressure and volume were taken as 20 psi (0.14 MPa) and 4.92 in.3
(79.5 cm3). The calculated values (solid lines) are given for
frictional and frictionless (C = 0.5 and C = 1.,0) incompressible air
flow into the cavity. 1In every figure, the calculated drag for the
frictional flow (denoted by *) is larger than the comparable
frictionless flow (denoted by +), because friction slows the flow into
the cavity. In turn, this decrease reduces cavity pressure (and
thereby increases drag) because of the cavity volume increase arising
from the motion of the MEM relative to the bird. Similarly, reduced A7
yields larger drag.

For all values of A7 ard for both wood and aluminum mitigators
at the termination of the setback (that is, when the force acting on the
bird due to the mitigator was relaxed to zero), the cavity pressure
exceeded that of the ambient atmosphere, and the aerodynamic drag force
was in the same direction as that for a setback. However, the expansion
of the cavity volume very quickly led to reduced cavity pressure, and
the drag force changed direction. As shown in figures 9 to 16 and
table II, the experimental data (individual shot numbers are denoted by
the prescript letter T) and the calculated data (denoted by the
prescript letter C) show that a state of steady drag occurred within
about 4 ms. Drag accelerations up to 30 g were obtained. For equal
values of A7, the wood mitigators yielded larger drags than that for
aluminum because of the higher elasticity of wood mitigators and the
resulting larger relative speeds between the MEM and the bird.

If one allows for the previously noted measurement precision,
the experimental data are in good agreement with the predicted data for
a frictional incompressible flow with values of C in the range of
0.5 < C < 1,0, For each mitigator, the experimental data indicate that
the value of C is nearly 1 for the larger A7 and reduces with decreasing
A7. Thas reduction would agree with the higher flow velocities through
a smaller gap and thereby higher shear streses associated with the
smaller leakage rates.
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4,3 Safety and Arming Device Tests

A current Army requirement is that a fuze shall not become
functional (arm) until subjected to two distinct, unique environmental
forces peculiar in the use of the fuze. One such double signature is
provided by a safety and arming mechanism (S&A) that requires a
successive setbidck and drag, in that order, during which ¢time the S&A
goes through three states: safe, to fail-safe, to fully armed. The
setback S&A is required to be insensitive to a setback of 2500 g, An
excessive setback of about 40,000 g can result in structural damage and
malfunction, The fail-safe condition results when the S&A has
experienced an adequate setback signature and the drag signature is
inadequate or does not occur in the proper time sequence with respect to
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the setback signature. For arming to occur, the simulation of
aerodynamic drag (minimum amplitude of 3 g) must be initiated within
about 5 ms following the termination of the setback, and the drag pulse
must endure for a minimum time. The minimum pulse time decreases with
increasing drag and amounts to 20 ms for a 3-g drag pulse. Moreover,
the fuze must not arm at accelerations below 1 g regardless of pulse
duration. Either an arm or a fail-safe condition results for drags
between these limits.

As a demonstration of the feasibility of the simulator as a
tester, a hollow bird was prepared to accommodate two S&A's (fig. 3).
The total weight of the bird including two of the devices was brought up
to the 0,53-kg weight of the bird in the tests previously described.
The MEM's, washers, and mitigators were used so that the setbacks
attained are assumed to be the same as those shown in figures 6 and 7.*
However, the diameter of the new bird was slightly smaller, so that the
A7 value associated with each washer was slightly larger. Drags up to
9 g were obtained. The shapes of the drag pulses are shown in figures 9
to 16, Streak photograph data were available for a total time of 20 ms
for each test, including setback. The calculated drag pulse duration
(corresponding to the MEM speed and the time required for the washer to
exit from the catch tube) was 21 ms for the wood mitigator and 91 ms for
the aluminum mitigator.

Table III summarizes the test results on the S&A, In all
tests, the setbacks shown in figures 6 and 7 caused the device to
proceed from a safe to a fail-safe position. Tests (not presented here)
showed that the device would remain in the safe position when the bird
impact speed was reduced to 95 ft/s (29 m/s) and the mitigator was
aluminum, For this speed, the pulse duration or magnitude of the
setback or both were insufficient to cause the S&A to proceed to the
fail-safe position, which condition agrees with the above-noted design
requirement for the S&A. Except in 1 out of 52 tests (wood mitigator
with A7 = 0.48 in.2 (3.1 cm?]), the test data of table III indicate that
the S&A performed as expected., Otherwise, with proper setback, the S&A
armed as required when the drag was larger than 3 g and remained in the
fail-safe position for a drag not exceeding 1 g.

*In the chronological order of this work, the simulator tests on the
S&A were performed prior to the previously described measurements, and
streak photograph data were not obtalned. However, on the basis of the
precision and repeatability of the data shown in figures 6 to 16, the
setback data can be assumed to be the same as those shown In figures 6
and 7, and the predicted frictionless drag data (C = 1) should
adequately represent test data,

11



TABLE |1+, -TEST RECORD OF PERFORMANCE OF FUZE
SAFETY AND ARMING DEVICE
- Cavity leakage area { l T Drag range
Mitigator | Tests (No,) A7 (in.2) ! Fail~safe | Armed | (a)
: [ ‘L e

Aluminum 16 ! 0.15 ' 0 | 16 | 9to3

2 » 0.20 0 | 2 ' bto2

6 0.30 5 N

] 0.39 : 1 [V 1

2 0.48 = 2 / 0 ' 0.9

6 0.67 l 6 [ 0 | 0.4
Wood & : 0.30 | 0 l b 1\ 7tos

8 0.48 l 14 | 7 ' 4to3

3 0.67 I P2 | 2

k 1.49 l 4 |0 | o3

[

a . .
Tudicdates mu’lwnction o

5. SUMMARY AND CONCLUSIONS

The setback and the drag were combined into a single laboratorw
tester to simulate, in the proper time frame, the sequential setback and
the aerodynamic drag experienced by Army ordnance projectiles. In the
present tests, the maximum setback was about 5000 g, and a steady-state
drag commenced within 4 ms of the completion of the setback, An
aerodynamic drag up to 30 g was simulated for 20 ms and up to 17 g for
90 ms.

Differences among test-to-test setback acceleration data for Dboth
wood and aluminum mitigators are generally within about 10 percent of
the instantaneous average value.

Finally, tests were performed on several units of an S&A to .Jemon-
strate the feasibility of the simulator as a tester., The results of the
simulator tests were found to be 1in good agreement with known design
characteristics,




R T S

Ll 2 e ]

A7

Cl

c2

D7

FO

LO

M4

M5

M7

M4

SYMBOLS
Instantaneous mitigator crush area (as measured at
projectile ["bird"] interface) (in.?)
Acceleration (ft/sz)
Cavity leakage area, comprising sum of leakages between catch tube
and momentum exchange mass (MEM) and between catch tube and bird
(in,<)
Friction coefficient: = 0.5 (frictional), = 1.0 (frictionless)

Mitigator elongation at bird interface, arising from relaxing force
thereon at T = TC {(in.)

Mitigator elongation at MEM interface, arising from relaxing force
thereon at T = TC {(in.)

Air density (= 0.0749 lbm/ft ')
Mitigator dynamic crush force (1b)
Mitigator static crush pressure (psi)
Length of cavity at termination of setback (in,)
Mass (gram)

Crushed mitigator mass (lbm)
Uncrushed mitigator mass (1lbm)

Mass of air passing into cavity {(lbm)
Time rate of mitigator crush (lbm/s)
Bird

MEM

Mitigator

Total air pressure in cavity (psi)

Ambient atmospheric pressure (= 14.7 psi)




pP7

a1

R7

wi

-3

TC

X1

X2

zZ1

Z2

SYRROLS (dont 'y

Partial pressure 1in cavity caused by air leakage into or out of
cavity (psi)

Hydrodynamic crush force {= M4(Ul - U2)] (1lb)
Time rate of mass flow into or out of cavity (lbm/s)
Ratio of crush front travel to depth of bird penetration

Time (s)

Time duration of mitigator crush (s)
Velocity (ft/s)
Initial bird velocity (ft/s)

Speed of air leakage passing into or out of cavity (referred to area
A7) (ft/s)

Honeycomb elongation at bird interface (= Cl - ¥3 + Y1 > 0) (in.)
Honeycomb elongation at MEM interface (= C2 - Y2 + Y3 > 0} (in.)
Displacement (in.)

Honeycomb spring constant at bird interface, where Al is
acceleration at T = TC (= =-AlM1/Cl) (1lb/in.)

Honeycomb spring constant at MEM interface, where Al is acceleration
at T = TC (= =-AlM1/C2) (1lb/in.)

Density of uncrushed mitigator (lbm/ft?3)

Washer diameter (in,)




Computer codes SETBACK and DRAG were used to compute the sequential

setback and the aerodynamic drag described in the main body of the

report.,

APPENDIX A.~-CODES

CODE 1. SETBACK

B0 heM J=

Y5 eHINT "SHOT NUMBER 153J
90 wed (LT AT MEM , J20
95 ReM MIT AT BIKD, JOO

100
110
120
120
150
160
170
1490
200

#00
H10

0
830
B4
1o
L1
H70
HH0
Ha9
l.m
wn
940

Clzusue e,

C232000

K= 1000

T125E-6

4121700/G1
M2242000/G1
M32,2u5%12.56%30/1728
A0z 12.56

Sz21.¢2

D=.245

PRINT “FOsx; Via; UOz; Ls; J=";
INPUT FO,VY,U0,L,J
[AERVe]

SER.00 PORE.O 2008, 2000 00.0 100.0 2,00 0000 000 O 00

H N .
PRINT " TIME
Va(U1-U2)7U0
M 2M3-MU
AzAO/L®(Y1-Y2)
IF ACAO GOTV 370

AzAD

F21.050P0%A/A00( 1V 19V)
Far®A0
RueDPAVS#(U U2}/ Y44
MusMUeRNE®T
HaRU®(U1-U2)
Aze(FeR}/(MleMA)

IF J20 GOTO 570
Ataab/(H1eM5)

A22r/ (M2+M5)

Ir J=0 GUTU 630
A2x(Fol)/(M2etu)

IF T<NOIE-4 GUTO 670

06,0 200, 0.000 200.0 0000
. on A2 U2 Y2

PRINT USING 270,TIEe?,=AV/G,U1,Y1,A2/G,U2,Y2,F/K R/K A

1F U2s>Ut GOTU 700
Nzl+.5

TaTeTH

UtsUteA 19T

Y1aY 101200197
U2sU24A2°T1

Y2:Y24 12002071

IF U2<ul S0T0 320
UTO 640

PHINT

NsT
PHINT “SPRING CUNSTANTS C1,C2s”;
INPUT LG22

J U3z

PALEY LIV |

PAZPA LI FTW

PREIT * 1ine =AY Uy xt A2 ue Xe Al
YiaY¥la¥ist

X1sUlaY a7t

Ir X190 GUTu 420

Xts0

¥ x1cel! T 850
UtsUds(HI1%I1eMI0U§) /7 (M10MY)
X1l

2L TS PN K

I¥ X250 Wty 880

Xe0

¥ Rr¢als QOTU 970

JIsU2s (M0 3eM201D )/ (N 1)
| ALTORS

AaaZ 10X 1/HY
AJa(L191-L20%2) /M3

1000 A2e200K2/M
1IN0 [F KN UT0 1220
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APPENDIX A

CODE 1. SETBACK (Cont'd)

11950 PRINT USING 280,T9%1Le3.~AV/G,U1,X1,A2/C,U2,X2,A3/G,U3
1200 1r ast JOTV 1260
1210 NaNeSE-5

1220 TsTe71

1221 UlsUteAreT)

1222 U2:U2¢A2°T1

1223 U3aldeA T

1224 YisYle 1280107

1225 Y22Y24120020T1

1226 Y32Y34120U3%T1

1230 I¥ A1eX2>0 COTV 790
1240 Wz

1250 GUTO 1150

1260 END

CODE 2. DRAG

100 Ga32.2

105 0= 1/G

110 G1=U54%G

120 mishSd/g1

130 m2+3800/g1

140 P12PO=P2s 8.7

150 T0e530

160 R253.34

170 26=3. 14

180 TisiE-4

190 PRINT “LOs; Pz; ATa; Ca¥;

200 INPUT LO,P,A7,C

210 PbsP

220 ulst

230 u2s15

240 VsA6*LO/ 1728

250 M62P6*V/ N/ TO® 144

270 DT=PO/I/TOY 144

260 :000. 00.00 00,0 1000 0000 M 0.0 n.n 0” (A /N
290 PRINT “TDHE Al Al " A2 u2 Y2 [ 44 ur P
291 PRINT USING 260,T®1E+3,A1%G0,U1,Y1,A29G0, U2, Y2,M7#1000, l’f ur,p

292 TaTeT?

293 NaNet

300 V1sA6OL1/1728

310 VaVeV)

320 POsMOYROTO/V/ 1uk

325 IF POCP QOTO 335

330 W-C‘(?‘(PO—P)'IH'? 01)°.%

331 QUTV 340

335 UTs-Co(29(P-PO)®104032.2/D1)" .5

340 R7sDT#UTOAT/ 14T

350 M7sMTeRT

360 PTaMTOROTO/V/ 144

370 P2P6+PT

380 A1s(PO-P)PAG/MY

390 A2s(P-P2)%(A6~AT)/M2

400 U2sU2»A2%T1

410 Y22 Y24U20T 1912

820 Uta10A 18T

430 Y1aY1oU10TI042

N0 L1s(U2-U1)*12°T1

450 IF TCN®1E-3 QOTO &

460 PRINT USING 260, 1‘1503 A1%G0, U1, ¥1,A29C0, U2, Y2,M791000,P7,U7,.P

470 IF Wet QOTO 530

480 NsNet

490 TeTeTY
500 I¥ T<10%1E-3 0OTO 300
510 Wet

520 QUTU 460
530 END
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